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Summary 

This report presents a record of the discussions that took place during the workshop entitled 

“Towards Data-Driven Operational Wildfire Spread Modeling” held on January 12-13, 2015, at 

the University of California, San Diego. The workshop was organized as part of WIFIRE, a 

collaborative project sponsored by the National Science Foundation (NSF) between San Diego 

Supercomputer Center, Calit2's Qualcomm Institute and Jacobs School of Engineering at the 

University of California at San Diego (UCSD) and the Department of Fire Protection 

Engineering at the University of Maryland (UMD). The objective of WIFIRE is to build a 

cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of 

wildfire behavior (see http://wifire.ucsd.edu). WIFIRE is funded by NSF Award #1331615 as 

part of the Interdisciplinary Research in Hazards and Disasters (Hazards SEES) program. 

The objectives of the WIFIRE workshop were: (1) to identify technical barriers and milestones 

that need to be overcome in order to develop validated data-driven wildfire spread models and 

make them operational; and (2) to bring together leading representatives of the wildfire research 

community, the geosciences community and the fire science community. The wildfire research 

community has relevant expertise on wildfire operations; the geosciences community has 

relevant expertise on large-scale effects in wildfires (e.g., the coupling with atmospheric 

phenomena); the fire science community has relevant expertise on flame-scale effects in 

wildfires (e.g., the response of the fire to changing local conditions). The workshop was 

organized around four main topical areas and corresponding breakout groups, including 

operational rate-of-spread models for wildfire spread, CFD models, wildfire data, and data 

assimilation (see Appendix A for a description of the WIFIRE workshop program). Our goal in 

this report is to document and share the substance and scope of the workshop discussions and to 

thereby invite the wider research community to support, engage in, and contribute to the general 

effort to develop operational data-driven tools for wildfire spread predictions. 

Michael Gollner and Arnaud Trouvé 

(workshop organizers) 

  

http://wifire.ucsd.edu/
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Introduction 

Providing accurate predictions of the spread of wildland fires has long been a goal of the fire 

research community. Whether used as a planning tool prior to prescribed burning or as an 

operational tool to predict the growth of current or potential uncontrolled wildfires, the accuracy 

of wildland fire spread models and their ability to provide useful information in a timely manner 

are of paramount importance. Despite the development of a plethora of fire models, their use has 

been relatively limited operationally. Some of this stems from the fact that all models are by 

nature approximate, simplified versions of reality. Available data to initialize and parametrize 

these models, such as fuels, topography, weather, etc., are also subject to large uncertainties and 

limited resolution. A new approach to this problem is to couple existing models and real-time 

observations, with the objective of reducing the uncertainties in model fidelity and input data by 

using real-time observations of the wildland fire dynamics. This approach is called “data-driven 

modeling.” Data-driven modeling allows an optimal use of available information and leads to 

improved forecasts of system dynamics. 

Long since used for weather predictions, data-driven modeling relies on the coupling of 

numerical model predictions and real-time observations, in essence nudging approximate 

simulations toward more accurate observations of the system state. While the potential for data-

driven fire modeling is clear [1–6], numerous challenges are still present. This workshop has 

addressed these challenges from different angles, focusing on existing operational tools and 

numerical models, data collection and data assimilation techniques, hoping to identify technical 

barriers and milestones that need to be overcome in order to make data-driven wildfire spread 

models operational. 

It is our hope that this workshop and the WIFIRE project as a whole will serve as a catalyst for 

the community to continue working on this problem. Numerous challenges must be addressed, 

such as the development of improved algorithms, access to remote sensing data with higher 

spatial and temporal resolution, and improvement of cyberinfrastructure. However, new 

technologies such as high performance computing, unmanned aerial vehicles (UAVs), 

commercial satellites, etc., are becoming a reality and are helping to overcome some of the 

current technical barriers. The fire research community should be prepared to utilize these new 

technologies as they become available. This workshop and the WIFIRE project make some 

preliminary steps in that direction. 
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1. Operational Rate of Spread Models 

In this section, we define operational models as simulators that are used as tools to respond to 

actively burning fires. These models are often computer applications that rely on simplified 

analytic models to predict the propagation of a fire as a function of time. Underlying these 

numerical tools, simplified mathematical models must be relied upon to solve for fire 

propagation faster than real time. These may be physical models based upon a simplification of 

known processes, empirical models, which rely on correlations to observed data, or semi-

physical models, combining the two [7-9]. Almost all operational models are empirical or semi-

physical in nature, requiring adjustments from real observations to account for unknowns in the 

models such as fuels, wind, unknown physics, etc., as the true physical nature of how fires 

spread does not yet seem to be well known [10,11]. 

The most common parameter calculated is the rate-of-spread (ROS) of the fire. This parameter 

enables a model to predict the propagation of a fire between time intervals, based upon specified 

conditions. In the most common model used in the United States, the Rothermel Model [12], 

information characterizing the fuel (moisture content, density, packing ratio, etc.), weather (wind 

speed, direction), and terrain (slope, aspect ratio) must be provided to the model which then 

calculates a constant ROS for the given conditions. Due to its wide use, the Rothermel model has 

been correlated with the surface ROS of many fuel types common in the US [13]. Many different 

models are available worldwide, which are mostly empirical, such as Cheney et al. or 

McArthur’s model to predict fire spread in Australian Grasslands [14,15]. 

While all ROS models are dependent on the fuel type, surface fire spread models, which include 

grasses, shrubs and other low-lying vegetation, have not been shown to extend to represent fire 

spread through a tree canopy. For such purposes, models for transition between the surface to the 

canopy are used, such as Van Wagner’s model [16], followed by adjustments to surface models 

to account for the drastically different fire spread regimes in crown fuels [17,18]. While Van 

Wagner’s transition model is semi-physical, models for the ROS in crown fires are almost all 

empirically-based.  

Because fuels ignite and burnout over a short distance, the depth of the “front” of the fire is often 

neglected and the fire is treated as an infinitesimally thin front (the fireline). Numerical models 

interpret ROS model predictions as values of the rate of spread in the direction of the wind or 

steepest slope and propagate the fireline or fire front over a two-dimensional landscape. The area 

enclosed by this fireline then grows with time as the fire propagates. Because models for fire 

spread can only provide the ROS in the fastest direction (head fire ROS), correlations must be 

used to propagate the fire to the sides or flanks. In some models, such as FARSITE, a Huygens’ 

wavelet model which assumes both an ellipsoidal fireline shape [19, 20] and correlations for the 

width of a fire [21,22] are used to spread the fire at the flanks. With this empirical description of 

the fire flanks ROS, one-dimensional correlations can be used operationally to predict two-

dimensional fire propagation.  
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While the full physical equations for the fluid dynamics and thermo-chemistry of fires can be 

formulated and solved numerically (e.g., Computational Fluid Dynamic approaches), this high-

resolution physics-based approach is (so far) computationally prohibitive and so has yet to be 

used operationally. One such model that intends to become operational in the future, WRF-Fire, 

still relies on the Rothermel model for fire spread. Therefore ROS models will remain critically 

important in many scenarios [23]. More discussion on CFD models for fire spread will be 

presented in Section 2.  

Other types of models, such as mathematical analogues or statistical approaches appear in the 

literature [9], however since none has been used extensively on an operational basis, they will 

not be covered here. A recent review by Sullivan of physical and quasi-physical [7], empirical 

and quasi-empirical, [8] and simulation and mathematical analogue [9] models for fire spread is 

an excellent source for further details.  

For the WIFIRE project, using the greater San Diego region as a testbed, simplistic models must 

be used because they can run quickly enough to be implemented as decision making tools. In 

Southern California, fire events are often of relatively short duration (up to 3 days) and are 

driven by wind conditions that are relatively well understood (Santa Ana wind conditions) [24]. 

Very few active fires here utilize modeling (or deploy fire behavior analysts) because the fires 

remain small and are contained rapidly. The fires that would benefit from modeling are those that 

escape initial attack, get out of control, become large and last for several days or longer: these 

fires are often termed “extreme fires.” A difficulty is that some of these extreme fires appear 

strongly affected by phenomena beyond the assumptions of the operational models (plume down 

bursts, canyons, interactions among several fire fronts) but documentation of such cases is 

difficult to acquire. While proposed data-driven modeling may improve these types of 

predictions in the future, the majority of fire modeling today is used for estimating fire risk and 

assist long term planning [25]. 

1.1. Operational Model Usage 

Two common operational tools used in the US are FARSITE and WFDSS-FSPro. FARSITE or 

the Fire Area Simulator is a semi-empirical model that calculates fire growth in two-dimensional, 

deterministic simplified test conditions [19]. It is the most widely used fire growth simulator in 

the US and is used by both CAL FIRE and the US Forest Service for training and operations 

during large wildfire events [20]. FARSITE can be used to simulate fire growth using forecasted 

wind-weather scenarios but offers no information on the probability of an area being impacted 

under multiple wind and weather scenarios. WFDSS-FSPro, a model that calculates spatial 

probability of fire spread, overcomes this limitation by generating thousands of potential wind 

and weather scenarios (based on the current season's weather as well as historic weather) and 

incorporates this information by simulating thousands of individual fires. By accounting for 

uncertainty in the weather and running a large ensemble of simulations, long-term analyses using 

FSPro provides risk-based assessments for strategic decision-making [26]. 
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Typically, these fire codes are not programmed to incorporate real-time data as they progress.  

However, the inputs for the atmospheric and vegetation parameters could be automated to accept 

real-time data instead of manually inputted.  

1.2. Limitations 

Operational fire models do not capture true fire physics. They represent fire behavior using 

equations that relate simplified parameters of the most common fire behaviors [11].  There are 

many behaviors not addressed by these models, including mass ignition and mass fire, 

interactions among multiple fire fronts, fire whirls and ember transport from fire whirls, 

thresholds for spread, and meteorological feedbacks on large fires (down bursts).  The inputs to 

these models – vegetation, wind and topography – are roughly defined to drive a conceptual 

output of what to expect. For instance, the fuel model utilized by FARSITE is a standardized 

representation of the real fuel specifically adjusted for the Rothermel spread equation [12]. That 

input is not specifically describing the actual vegetation and is derived from a static product that 

is updated every 2 or 3 years. The Landfire product, where most spatially-resolved fuel and 

topography data are derived from in the US, does not have annual adjustments for areas that have 

been burned, grazed, etc. [27]. Error in static fuel maps where major fires have occurred often 

require individual analysts to make modifications before modeling. 

In order to improve the accuracy and utility of fire modeling, the physics must eventually be 

better understood. However, ongoing research to this end will require many years before it is 

included in operational tools [10]. Even then, this information will still be subject to inherent 

inaccuracies in input data. Because understanding the physics in various regimes remains 

difficult, ensembles of varying conditions have often been used to accommodate for the lack of 

fidelity and accuracy. The ensemble-averaged predictions result in probabilities for fire growth. 

Data-driven modeling offers the opportunity to improve upon this statistical-ensemble-based 

approach by taking advantage of real-time sensor data. In the meantime, there are several 

opportunities for increased cyberinfrastructure to provide resources to fire managers with 

existing tools, as described below. 

1.3. First Steps towards Data-Driven Operational Wildfire Spread Modeling 

We present below three examples in which enhanced cyberinfrastructure and new workflows are 

affecting wildfire safety strategies. The first two examples are based on work performed by the 

PHOENIX Rapidfire research team at the University of Melbourne, Victoria, Australia [28]. 

Systematic wildfire spread simulation triggered by ignition reports 

The state of Victoria in Australia has developed a new operational standard for running 

PHOENIX automatically for every ignition event that is reported at their emergency phone 

number. The intent in this new standard is to provide a systematic estimate of where the fire may 

go within 5 minutes of its initial reporting. That assessment is presented with an uncertainty 
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boundary. An ensemble-based approach captures the uncertainty in exact ignition location and 

start time. See Figure 1 below. 

This new standard eliminates the process of waiting to determine if a model is necessary, and 

provides a preliminary assessment of intensity and impact over the first few hours of the fire 

spread. 

Systematic wildfire spread simulation triggered by new weather forecasts  

Another innovative approach being tested with emergency services in the state of Victoria is to 

use daily weather forecasts (produced twice a day) and run the PHOENIX RapidFire model with 

a 5 km ignition grid across the State of Victoria in order to generate fire risk maps (Figures 2(a)-

(b)). Once processed, results can be quickly queried for response and/or planning. Results can be 

used to describe relative potential exposure to fire spread. If a real fire is reported during this 

time, analysis can be done using existing pre-processed model outputs. 

One key question to be answered by fire models during a potentially damaging fire is to quantify 

how much area will burn and how many houses and/or infrastructure are at risk of being lost.  

This problem cannot be solved by a traditional approach as it is difficult to define a threshold 

indicating which regions of interest will be involved in the fire, so instead an uncertainty barrier 

(fire affected area) has been implemented. Assets falling in the impact zone need to be 

considered for protection or evacuation. Initial rate of fire spread gives a good indication of fire 

risk to firefighters. 

 

Figure 1: PHOENIX Rapidfire automated prediction report showing an estimate of the fire 

location (dotted orange line) and intensity, at a given time, through an ensemble of simulations 

that accounts for uncertainties in ignition location and timing [28]. 
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Figure 2(a): PHOENIX Rapidfire automated prediction report showing an estimate of the fire 

probability through an ensemble of simulations that corresponds to varying ignition location 

[28]. 

 

 

Figure 2(b): See caption of Fig. 2(a). This map shows the potential property loss. Ignition points 

are in yellow, endangered assets are in red [28]. 

Educating the public 

A persistent theme in operational fire response is that the public is not sufficiently educated in 

the hazards of wildfire in fire-prone regions. Florida is an interesting case because the 

government there has made significant efforts to inform communities on the fire problem, 

including fire hazards, frequencies, laws and regulations [29]. This is especially critical in places 

like Florida and California where much of the population is not native to the area. One goal of 



WIFIRE Workshop “Towards Data-Driven Operational Wildfire Spread Modeling” 

January 12-13, 2015, UCSD 

 

8 

the modeling effort is to create educational communication tools to describe fire as a scientific 

process and help influence adaptation and preparedness at the community level. 

In Australia, there is a growing focus on the social aspects of managing wildfires and a growing 

use of spread models for planning [30]. Investment in spread models by fire agencies is now 

more weighted towards model inputs and impact modeling rather than understanding and 

improving the description of spread mechanisms. In general, fires agencies struggle with 

investing in basic research on fire physics. 

1.4. Conclusion and Implications for WIFIRE 

The three examples presented in this section are good candidates to be considered by WIFIRE 

for evaluating the potential of an enhanced cyberinfrastructure on fire prevention and/or 

firefighting in San Diego County. Under weather conditions that are well understood and 

predictable, operational wildfire spread models can be used and preprocessed to generate fire risk 

maps. The forecast products can then be used to generate messages/warnings as is already done 

with numerical weather prediction outputs. 

The greater challenge is with fires under extreme or unpredictable weather conditions. Research 

workflows should be developed for extreme fire events.  

2. CFD Models for Wildfire Spread 

2.1. Domain of Application of CFD-Based Wildfire Models 

Computational Fluid Dynamics (CFD) models are three-dimensional numerical flow solvers 

based on the Navier-Stokes equations and the basic principles used in fluid mechanics and heat 

transfer of conservation of mass, momentum and energy. CFD models are routinely used in 

many areas of science and engineering, including geosciences and aerospace, mechanical and 

chemical engineering. Over the past twenty-five years, CFD models have also been adapted and 

applied to building fire and wildland fire problems. These models typically have a restricted 

domain of validity/application and are designed to simulate some specific aspects and processes 

of fire phenomena: partly because of current limitations in computational power, and partly 

because fire dynamics at the fine scales of combustion and heat transfer are still not fully 

understood, CFD-based wildfire models do not provide a complete and accurate description of 

all scales relevant to the fire dynamics. Despite these limitations, a strength of CFD-based 

wildfire models is that they provide a description of the strong coupling between the fire and its 

environment: for instance, the fire dynamics are affected by environmental conditions, in 

particular the three-dimensional wind conditions; environmental conditions are affected in turn 

by the release of large amounts of heat associated with combustion processes (see an illustration 

in Fig. 3). This coupling between the fire and the atmosphere is considered critical to a basic 

understanding of erratic and/or extreme wildfire behavior. 
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Figure 3: Illustration of current coupled fire-atmosphere capabilities: instantaneous snapshot 

from a mesoscale (several tens of kms) wildfire simulation using Meso-NH/ForeFire. The three-

dimensional image shows wind speed in red/blue colors in a vertical slice along with vorticity in 

green/purple colors along spaghetti-like streamlines (the streamlines are positioned in the 

vicinity of the fire plume). Picture taken from Ref. [31]. 

CFD models have been used successfully over the past two decades to bring fundamental 

insights into wildfire dynamics and have thereby contributed to increase our basic understanding 

of the mechanisms that control wildfire spread. They have also been used to simulate and help 

interpret laboratory-scale and field-scale wildfire experiments. It is worth emphasizing, however, 

that despite the significant progress that has been made to date, there is a large consensus in the 

wildfire research community that a fundamental understanding of wildfire spread is still lacking. 

Because of this incomplete understanding of wildfire spread mechanisms, the exact level of 

fidelity and accuracy provided by CFD models remains an open question. This question is a 

barrier to a more widespread application of CFD in wildfire research and to a possible 

integration into operational models. 

2.2. The Multi-Scale Problem in CFD Modeling Applied to Wildfire Behavior 

The dynamics of wildfires are determined by interactions between pyrolysis, combustion, heat 

transfer, near-flame flow dynamics as well as atmospheric flow dynamics. These interactions 

occur at: vegetation scales that characterize the biomass fuel; flame scales that characterize the 

combustion and heat transfer processes; geographical scales that characterize the terrain 

topography and land cover; and meteorological regional/global scales that characterize 

atmospheric conditions. Figure 4 gives a schematic representation of the different length scales 

that are believed to play a role in fire behavior: the vegetation scales, denoted Lvegetation; the flame 

scales represented by a characteristic flame height and width, Lflame and Wflame; the length of the 

fireline, Lfireline; the geographical scales represented by a characteristic topographical scale and a 

land cover scale, Ltopography and Lland_cover; and the meteorological scales represented by the depth 

of the atmospheric boundary layer (ABL), LABL. In addition, the fire plume has scales that can be 
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represented by a characteristic height and width, Lplume and Wplume; the plume scales take a large 

range of values as they grow from flame scales to geographical scales and then to meteorological 

scales. In wildfire problems, Lvegetation is on the order of a few millimeters or centimeters; Lflame 

and Wflame are on the order of a few meters; Lfireline, Ltopography and Lland_cover are typically on the 

order of a few tens or hundreds of meters; and LABL is on the order of kilometers. 

CFD models have the potential to provide detailed information on the interactions between 

physical phenomena occurring at all these different scales. However, because of computational 

cost, the domain of application of CFD models is typically limited to a particular range of scales. 

Thus, current CFD-based wildfire models are scale-specific and belong to one of the following 

three classes (see Fig. 5): combustion solvers aimed at describing the coupling between 

pyrolysis, combustion, radiation and flow occurring at the vegetation and flame scales; wildfire 

solvers aimed at describing the coupling between combustion and flow occurring at fireline 

scales and/or geographical scales; and atmospheric boundary layer solvers aimed at describing 

the coupling between combustion and flow occurring at meteorological scales. 

Examples of combustion solvers that have been developed for wildfire dynamics applications 

include a group of models known as multiphase models [32-35]. These solvers use a 

computational grid resolution of order 1-10 cm and provide a fine-grained treatment of the 

pyrolysis, combustion and heat transfer processes that are responsible for flame spread through a 

first-principles-based model. Simulations with these solvers are typically performed in small 

domains (a few tens of meters in two-dimensional simulations or a few meters in three-

dimensional simulations). 

 

Figure 4: The different length scales that contribute to determining wildfire behavior: vegetation 

scales, flame scales, fireline scales, geographical scales (i.e. topographical scales and land 

cover scales) and meteorological scales. 
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Examples of wildfire solvers include FIRETEC [36] and WFDS [37] (WFDS is based on FDS 

[38], a well-established solver originally developed for fire plume dispersion and building fire 

applications). These solvers use a computational grid resolution of order 1 m and provide a 

coarse-grained treatment of unresolved vegetation-scale and flame-scale processes through a 

simplified (but physics-based) combustion model. Simulations with these solvers are typically 

performed in intermediate-size field-scale domains (e.g., one kilometer in size). 

Examples of atmospheric boundary layer (ABL) solvers that have been developed for wildfire 

dynamics applications include WRF-SFIRE and WRF-Fire [23, 39-41] as well as MESO-

NH/ForeFire [42,43]. These solvers use a computational grid resolution of order 10-100 m and 

provide a macroscopic-level treatment of unresolved vegetation-scale, flame-scale, fireline-scale 

and topographical-scale processes through a parametrized semi-empirical rate-of-spread wildfire 

model. Simulations with ABL solvers are typically performed in arbitrary-size field-scale 

domains (from a few kilometers to several tens of kilometers and beyond). The atmospheric 

boundary layer solvers feature nesting capabilities that allow for multi-scale simulations in which 

an outer domain of coarse resolution captures the large synoptic-scale (larger than 1000 km) flow 

and feeds a set of nested higher-resolution inner domains that describe the mesoscale (between 1 

km and 1000 km) and microscale (smaller than 1 km) flows. The rate-of-spread wildfire model 

operates on a separate surface model with grid resolution typically more than 10 times finer than 

that used on the finest inner domain of the atmospheric flow model. A strength of ABL solvers is 

that they are integrated with research-level or operational-level numerical weather prediction 

capabilities (i.e., WRF and MESO-NH) and therefore incorporate detailed descriptions of the 

fuel maps, topographic maps and weather conditions. 

 

Figure 5: The different classes of CFD models used for wildfire spread simulations: combustion 

solvers resolve dynamics at the vegetation and flame scales; wildfire solvers resolve dynamics at 

the fireline and geographical scales; atmospheric boundary layers (ABL) solvers resolve 

dynamics at the meteorological scales. 



WIFIRE Workshop “Towards Data-Driven Operational Wildfire Spread Modeling” 

January 12-13, 2015, UCSD 

 

12 

Thus, combustion solvers are limited to the lower range in the spectrum of relevant length scales 

and their domain of application is restricted to fundamental studies of local flame dynamics 

and/or comparisons with laboratory experiments. Wildfire solvers focus on intermediate-scale 

fireline-flow-topography/land-cover interactions and their domain of application includes 

fundamental studies of fireline dynamics and/or comparisons with field-scale prescribed fires or 

experiments. Finally, atmospheric boundary layer solvers consider the upper range in the 

spectrum of relevant length scales and their domain of application includes fundamental studies 

of wildfire-atmosphere interactions and/or comparisons with real fire incidents. The atmospheric 

boundary layer solvers have also the potential to be used as a component of operational models. 

2.3. CFD-Based Wildfire Models for Operational Applications 

As pointed earlier, the exact level of fidelity and accuracy provided by CFD models in general, 

and atmospheric boundary layer (ABL) solvers in particular, remains an open question and there 

is a widespread concern that these models may not be mature enough (yet) for a possible 

integration into operational models. A key concern involves assumptions required to 

accommodate fire-atmosphere coupling with the explicitly uncoupled fire behavior model of 

Rothermel [12]. The Rothermel spread equation assumes airflow in the absence of the fire and 

therefore requires highly subjective parameters to force the model to capture effects of feedback 

between fire-induced airflows and flame spread. Nevertheless, the main arguments favoring an 

ABL modeling approach to fire disaster management tools are: 

1) ABL models are already in use for weather forecasting applications and provide valuable 

forecasts of meteorological conditions, e.g., possible changes in prevailing wind 

directions, air temperature and humidity; 

2) ABL models can incorporate high-resolution topographical and land cover information 

and thereby provide accurate estimates of near-fireline environmental conditions, in 

particular surface wind conditions and ambient levels of humidity, which are dominant 

factors in determining the rate of wildfire spread; 

3) ABL models can incorporate high-resolution flow-plume interaction models and thereby 

provide accurate estimates of the fire plume dynamics and smoke composition (i.e., 

toxicity levels and atmospheric pollutants). 

There is also some interest in applying the power of CFD to incorporate fire spread due to 

spotting, without which the dynamics of the largest fires are difficult to model. Figure 6 presents 

an illustration of the importance of providing better descriptions of surface wind conditions 

alone. As stated above, the objective of providing accurate descriptions of environmental 

conditions that control the local wildfire dynamics can be met by developing validated CFD 

models. 
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Figure 6: Simulation of wildfire spread using FARSITE with uniform wind (left picture) versus 

spatially-resolved wind (right picture). Reproduced from Ref. [44]. 

3. Wildfire Data 

Whether collected from prescribed burns or uncontrolled wildfires, the types and the spatial and 

temporal resolution of data collected are paramount to the development and use of wildland fire 

spread models. With the exception of satellite remote sensing or ground-based point-source 

wind, temperature and humidity measurements, wildland fire data have primarily been collected 

via prescribed burn experiments requiring significant time and resources. 

Early data collection efforts began with single goals in mind (e.g., Fireflux to evaluate coupled 

fire/atmosphere modeling [45]), however more recent data collection efforts have tried to collect 

data on prescribed burns that serve multiple user groups (e.g., RxCADRE [46]). Because the 

focus of the workshop is real-time fire modeling, our review will restrict itself to experiments 

focused on fire behavior and spread rather than fire emissions, even though these studies are also 

important for many other user groups [47,48]. Other data reviewed will include available remote 

sensing resources and fuel and weather feeds. A review of the need for data collection, types of 

data available, remote-sensing products available and several large data sets and future 

recommendations will also be covered.  

3.1. Purpose of Experimental Data Collection 

It is often difficult to justify the large expense and effort of a wildland fire experiment. Two 

primary needs have motivated most studies collecting data on wildland fires in the literature. 

First, sets of data have been collected to help understand wildland fire phenomena and to develop 

either empirically- or physically-driven models to describe the process. Early laboratory-scale 

experiments from Rothermel et al. provided a needed data set culminating in the development of 

semi-empirical steady rate-of-spread (ROS) models for fire spread through dead, surface 

wildland fuels [12]. Later field experiments in Australia produced a similar model for surface 

spread through grassland fuels [14]; that model was almost entirely empirically-based. 

Laboratory-scale or field-scale experiments must be conducted with a specific scientifically-

driven hypothesis in order to become as efficient and practically useful as possible, providing a 
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framework from which to frame potential results. With the advent of numerical modeling, more 

properties have begun to be collected during experiments with the intent to both increase our 

basic understanding of physical phenomena and validate newer, high-fidelity numerical models. 

Second, data are often desired for model evaluation or validation. Originally developed as steady 

rate-of-spread models and validated using limited laboratory- and field-scale experimental data, 

ROS models are in great need of more diverse and more realistic data to demonstrate their 

validity for a range of wildland fire scenarios. For semi-empirical models, results from 

experimental tests are statistically incorporated with an underlying physics-based theoretical 

framework and fit to results. This was done by Rothermel for surface fire models [49] and later 

by Cruz et al. for crown fire models [18]. For CFD models, the 3D weather and fuel data are 

much more complex than the data provided to 1D or 2D empirical models. Simplifications, 

therefore, become absolutely necessary for all of the above models, but the trade-off between 

model performance and degree of simplification is not known. 

Validation attempts to evaluate the level of agreement between a real-world system and a model. 

Validation may be undertaken for purposes of determining the “correctness” of model 

formulation, which is almost impossible for wildfires under field conditions because of the 

uncertainty of a large number of initial and boundary conditions. Alternatively, for validating the 

operational utility of a model, the contribution of model error must be quantified separately from 

user- and data-error sources. In wildland fires, this has also proven extremely difficult, even for 

the simplest fire model. 

Models can, however, provide useful information within a domain of application even with 

considerable sources and degrees of uncertainty, as operational empirical models are now used, 

with essential input of the expertise and judgement of a human analyst.  It is within this domain, 

therefore, that they can be tested with field-based data. Choosing the right variables to evaluate 

(rate of spread, fireline location, flame length, fire intensity, etc.) is important in properly 

verifying or validating models. 

3.2. Types of Experimental Data 

There is no simple answer to the question of what type of data is necessary for model evaluation 

because each model has a different objective (fire science, investigation, consulting, land 

management, real-time emergency response, etc.), with some having multiple objectives 

depending on their specific application. A different set of data needs to be measured for each 

application, with different spatial and temporal resolutions. With the limited resources available 

to conduct large-scale outdoor experiments, it is best that the experiments are designed with the 

most overlap possible without sacrificing accuracy, benefiting both physical model development 

and model evaluation. The interaction between modelers and experimentalists is therefore 

needed, something recently demonstrated in the RxCADRE experimental campaign. 

Fuel characteristics are often determined before any prescribed fire in order to know the 

properties of the fuel that will burn. Measurements of pre- and post-fire fuels using destructive 
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(e.g., clipping and weighing) and non-destructive (e.g., LIDAR) techniques allow an evaluation 

of the fuel consumption. Variables measured and sampling techniques from different disciplines 

are shown in Table 1. 

Table 1: In-situ measurements available during fire experiments based on disciplines as defined 

for the RxCADRE experiments [46]. 

Discipline Variables Measured Sensing Technique(s) 

Fuel Characteristics 

Mass 

Mass scale, sampling, LiDAR Cover 

Depth 

Moisture Drying/sampling, hydrometer 

Fuel Consumption Mass consumed by fuel component Direct measurements, LiDAR, IR 

Fire Effects 

Thermal radiometry 
Visible and IR videography, heat flux 

gauges 
HD visual imagery 

Stem temperatures 

Local Event-Scale 

Meteorology 

Plume Properties 3-D sonic anemometers, thermocouples, 

thermisistor/hygristors, Doppler SoDAR, 

Doppler Lidar, Doppler mini SoDAR, cup 

and vane anemometers 

Fine-scale wind and 

thermodynamic fields 

Fire Behavior 

Fire intensity 

Heat flux gauge, thermocouples, pressure 

probes, videography (IR/visible) 

Rate of spread 

Convective/radiative heat flux 

Soil heating 

Wind/flame velocity 

IR imagery 

Event-scale Fire Mapping 

Fire radiative power and energy 

IR imagery (tower, UAV, satellite) Flame front development 

Satellite imagery of fire and effects 

Emissions and Event-Scale 

Plume Behavior 

Emissions of CO, CO2, H2O, PM2.5 Gas sensors, particle sensors, Doppler 

SoDAR, Doppler Lidar, Doppler mini 

SoDAR 

Black Carbon 

Plume Height 

 

Fire/atmosphere modelers are often interested in data beyond the fireline (at the scale of the 

atmospheric boundary layer) for model evaluation. These could be defined as local event-scale 

meteorology. During experiments the majority of measurements are ground based (vane or sonic 

anemometers); however, other measurements within the atmospheric boundary layer such as 

Sodar and upper-air soundings are also taken. Some of these measurements can also be taken to 

assess the convective plume, which relates to emission and transport of effluents from the fire. 

There are a host of effluents that can be measured, including gaseous species (e.g., CO, CO2), 

black carbon, particulate matter (e.g., PM2.5), etc.  Fireflux I and II were experiments specifically 

designed to measure these features, mainly in order to evaluate coupled fire-atmospheric CFD 

modeling tools [41,43,45]. 

For fire behavior analysis, most data collected in both prescribed and accidental wildland fires 

have come from instruments on the ground. Many studies are interested in improving models for 

wildland fire spread, focusing on flame scales to larger fire line behavior. Other outcomes such 

as effective distances for firefighter safety zones and effects on ecological systems are also 



WIFIRE Workshop “Towards Data-Driven Operational Wildfire Spread Modeling” 

January 12-13, 2015, UCSD 

 

16 

considered before conducting measurements [50]. These often consist of point measurements of 

convective and radiative heat fluxes, temperature, vertical and horizontal velocity, video imagery 

and relative humidity. Overhead measurements of infrared (IR) images to map the fire or provide 

fire radiative power estimates are often recorded. These overhead IR images can be processed to 

track the fireline for use with real-time fire modeling techniques and also assess the accuracy of 

remote sensing applications comparing readouts to those taken by satellites or unmanned aerial 

vehicles (UAVs). These are often coupled with measurements of the surrounding winds and 

atmosphere necessary to properly initialize CFD models. Collected point data (such as heat 

fluxes) are sometimes meant to inform CFD modelers, but are more often used for development 

of physical fire models (e.g., the dominance of convective or radiative heat fluxes) or firefighter 

safety (e.g., firefighter safety zones).  

For coupled fire-atmosphere modeling, multiple data sets are needed for comparison with the 

weather model components, such as WRF. These data include upper-air observations of both the 

atmospheric thermodynamics and winds. These data can be obtained from in situ radiosonde 

systems or remote sensing instruments; however, the stochastic nature of turbulence makes using 

these data and properly initializing atmospheric CFD models a difficult task. 

3.3. Wildfire Sensing Products for Near Real-Time and Archival Applications 

Remote sensing, particularly airborne and satellite-based measurements, detect fire location and 

may provide an estimate of the fire intensity for each pixel (fire radiative power, or FRP). While 

polar orbiting satellites such as Terra, Aqua, and S-NPP (with MODIS and VIIRS sensors, 

respectively), provide autonomous, synoptic observations of fire activity, both day and night, 

nominally twice a day from each sensor, this temporal resolution, and the corresponding spatial 

resolution, may not be adequate for real-time fire modeling. NOAA’s Geostationary Operational 

Environmental Satellite system (GOES) offers greater temporal resolution, but suffers in terms 

of spatial resolution. This applies to both post hoc model evaluation of a fire event or real-time 

predictions of fire spread. Therefore data fusion with various sources of remotely sensed data, as 

well as downscaling techniques, could improve remotely sensed data resolution to fill gaps. A 

summary of satellite-based remote sensing sources is provided in Table 2 while Table 3 presents 

popular online products for remote sensing and ground-based inputs needed for modeling.  

Table 2: Satellite-based remote sensing sources for fire detection and soil moisture content. 

Source Description Resolution Frequency Link 

MODIS Fire detection (IR) 1 km 6 h http://modis.gsfc.nasa.gov  

VIIRS Fire detection (IR) 750 m 12 h http://npp.gsfc.nasa.gov/viirs.html  

GOES Fire detection (IR) 4 km  http://www.goes.noaa.gov/  

Landsat Fire detection (IR) 30 m 16 h http://landsat.usgs.gov 

AVHRR Fire detection (IR) 1 km 8 h http://www.ssd.noaa.gov/PS/FIRE/Laye

rs/FIMMA/fimma.html  

S-MAP Soil moisture content (IR) 1-3 km 2-3 days http://smap.jpl.nasa.gov/  

http://modis.gsfc.nasa.gov/
http://npp.gsfc.nasa.gov/viirs.html
http://www.goes.noaa.gov/
http://landsat.usgs.gov/
http://www.ssd.noaa.gov/PS/FIRE/Layers/FIMMA/fimma.html
http://www.ssd.noaa.gov/PS/FIRE/Layers/FIMMA/fimma.html
http://smap.jpl.nasa.gov/
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Spatial information, particularly regarding the fireline location and fire intensity (radiative heat 

flux), and a measure of the data uncertainty are all necessary for fire spread modeling. Questions 

arise particularly in the use of the data, i.e. what remotely sensed data (e.g., satellite-based for 

wildland fire applications) are “good enough” for modeling? For example, what is the upper 

level of temporal latency and spatial resolution required for particular applications? Is 6 nominal 

“looks” per day of a fire event at 750-1000 m nominal resolution too coarse? Can this be 

downscaled through interpolation methods such as kriging or incorporating burned area with hot 

spots?  

Data assimilation relies on real-time information to improve predictions operationally, however 

extensive datasets from previous efforts can be utilized to test the applicability of this technique 

for real-time fire modeling. The most valuable data are firelines (or fire locations). These data 

can be collected from manual entries (such as NIROPS, night observations of firelines during 

active wildfires), satellite data, UAVs, etc. Other information on the fire is important to initialize 

the simulation. Fuel moisture could also be useful as well as real-time weather conditions.  

The Direct Broadcast community provides the best source of near-real time data for operational 

modeling and situational awareness. The network of receiving stations within the U.S. and 

globally continues to expand and as new satellites are launched and products developed these 

stations have evolved to keep pace. Many of these resources are available to the public with 

some delay online, see Table 3. 

While an assortment of sensing products is available, these products do not yet provide firelines 

at the kind of spatial and temporal resolution that seem to be required for real-time wildfire 

spread modeling. Data with good spatial resolution of fuel and topography are available in 

localized areas, typically performed by LIDAR; however, they are not yet available in a 

nationwide database. Due to activities changing this fuel over time, the database would have to 

be updated frequently. Note that the data assimilation technique may make up for inaccuracies in 

input data. 

Table 3: Popular fuel, weather and fire detection products available online. 

Source Description Link 

Fire perimeters and incident data 

USFS 

Active Fire 

Mapping 

Large federal (US) fire incidents including 

remote fire detection maps 

activefiremaps.fs.fed.us  

GeoMAC Geospatial Multi-Agency Coordination: reports 

of fire progression from GIS, incorporates 

NIROPS IR flights at night (lag in posting) 

http://www.geomac.gov/  

Incident 

Information 

System 

Incident information system for large wildland 

fires from the NWCG 

http://inciweb.nwcg.gov/  

NICC Different incident command centers - links http://www.nifc.gov/nicc 

http://activefiremaps.fs.fed.us/
http://www.geomac.gov/
http://inciweb.nwcg.gov/
http://www.nifc.gov/nicc
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NWCG National Wildfire Coordinating Group 

coordinates activities between different US fire 

agencies 

http://www.nwcg.gov/  

NIFC National interagency fire center coordinates US 

Fire activities and updates daily statistics 

http://www.nifc.gov 

USFS 

RSAC 

USFS remote sensing applications center http://www.fs.fed.us/eng/rsac/ 

NIROPS USFS National Infrared Operations, flown over 

major fires once per evening as requested 

http://nirops.fs.fed.us/  

Avenza Smartphone application used by wildfire-

fighting crews to record updates to fireline 

http://www.avenza.com/pdf-maps 

Fuel Data 

LandFIRE Vegetation, fuel, topography, etc. http://www.landfire.gov 

Live Fuel 

Moisture 

Based on NVDI Data http://wfas.net  

Emissions Data 

NOAA 

Hazard 

Mapping 

System 

Aerosol thickness, etc. http://www.ospo.noaa.gov/Products/land/hms

.html  

IDEA - 

NOA 

Aerosol optical thickness coupled with fire 

detections 

http://www.star.nesdis.noaa.gov/smcd/spb/aq/  

WRAP 

FETS 

Fire emissions tracking on the US west coast http://wrapfets.org/  

Weather Data 

HRRR High resolution rapid refresh from NOAA of 

their atmospheric/wind model 

http://ruc.noaa.gov/hrrr/  

MESO-

WeST 

Real-time weather station data (RAWS and 

others) 

http://mesowest.utah.edu/ 

RAWS Remote Automated Weather Station (RAWS) 

data 

http://raws.wrh.noaa.gov/roman/ 

NOAA 

Land Station 

Data 

NOAA National Climate Data Center land 

based data 

http://www.ncdc.noaa.gov/oa/land.html 

Atmospheri

c Sounding 

Atmospheric Soundings of Upper Air http://weather.uwyo.edu/upperair/sounding.ht

ml 

NOMADS The NOAA National Operational Model 

Archive and Distribution System 

http://nomads.ncdc.noaa.gov/ 

NOAA Env. 

Prot. Prod. 

NOAA National Center for Environmental 

Prediction model products 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/ 

 

MADIS MADIS is a meteorological observational 

database and data delivery system that provides 

observations that cover the globe.   

https://madis.ncep.noaa.gov/  

 

Firelines with spatial resolution of approximately 10 m and temporal resolution of approximately 

10 minutes are desired to achieve a reliable forecasting tool with accurate enough predictions for 

local-scale fires [6]. These requirements can theoretically be met with current satellite 

technology; however, these requirements may also be cost-prohibitive at the moment. Some of 

these problems could be alleviated with the deployment of UAVs over a fire. However, the use 

http://www.nwcg.gov/
http://www.nifc.gov/
http://www.fs.fed.us/eng/rsac/
http://nirops.fs.fed.us/
http://www.avenza.com/pdf-maps
http://www.landfire.gov/
http://wfas.net/
http://www.ospo.noaa.gov/Products/land/hms.html
http://www.ospo.noaa.gov/Products/land/hms.html
http://www.star.nesdis.noaa.gov/smcd/spb/aq/
http://wrapfets.org/
http://ruc.noaa.gov/hrrr/
http://mesowest.utah.edu/
http://raws.wrh.noaa.gov/roman/
http://www.ncdc.noaa.gov/oa/land.html
http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
http://nomads.ncdc.noaa.gov/
https://madis.ncep.noaa.gov/
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of UAVs has separate jurisdictional issues which to date have limited their use for prescribed 

fires. 

NIROPS have shown that it is possible to capture firelines at good spatial resolution using an 

airborne infrared sensor. However, the low frequency of the fireline mapping (maps are made 

only once per night) is a limitation. Part of the problem is that the process is not automated. The 

use of drones, for instance the use of an MQ-1 Predator Remotely Piloted Aircraft (RPA) on the 

Rim fire in California, was successful in observing particular locations, but no permanent 

program has been established, most likely because of the high cost and UAV safety concerns1. 

Several changes in the near future may change this picture. Smaller and cheaper sensors, new 

satellites funded by private industry and advancements in sparsely networked data may provide 

new means for data to be captured from multiple sources and automatically compiled together. 

This could come from public and commercial satellites, equipped firefighting aircraft that 

already span a fireline and UAVs which are advancing in popularity and decreasing in cost. 

Obviously, without procedures for UAVs to deploy during a fire and relay that information in a 

timely manner to modelers, data-driven operational fire spread modeling may not be feasible. 

However, advancements in technology and policy are coming so quickly that we foresee that 

real-time fireline data will be available within a decade.  

3.4. State of the Science - Experimental/Prescribed Fire Data 

A number of data sets exist from experimental fires for model validation (see Table 4). Some of 

these experiments were designed specifically for model evaluation applications (e.g., 

RxCADRE, FireFlux II), while others were conducted for basic fire behavior monitoring. The 

advantage of controlled experimental fires as compared to active wildfires is the ability to control 

the environmental conditions for burn operations, optimized sensor placement, number of sensor 

platforms and types, and timing with satellite overpasses. In addition, fuels can be well 

characterized and thereby respond to the needs of fire models.  

Controlled fire experiments are, however, plagued with several problems. One problem is that 

the data are typically not publicly available: only Fireflux I and RxCADRE have datasets that 

can be found online and in both cases, the data sets are not yet complete. Another problem is that 

experiments are generally conducted under low wind and in relatively flat terrain, i.e., under 

conditions that are not representative of actual uncontrolled wildfires. A third problem is the 

control of initial and boundary conditions. High-fidelity CFD results are very sensitive to input 

data such as atmospheric winds, which typically are only measured at the surface at one or a few 

points. During modeling studies, it is often found that choosing different inputs for wind will 

drastically alter the simulated fire dynamics. This problem can be overcome in part in real-time 

modeling applications by using data assimilation techniques. The question of how to characterize 

initial and boundary conditions in field-scale fire experiments remains an open one. 

                                                
1 http://www.fs.fed.us/science-technology/fire/unmanned-aircraft-systems  

http://www.fs.fed.us/science-technology/fire/unmanned-aircraft-systems
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FireFlux II 

The FireFlux II campaign was conducted as a follow up experiment to the first FireFlux 

experiment conducted in 2006 on a coastal tall-grass prairie in southeast Texas, USA [53]. The 

FireFlux campaign dataset has become an international standard for evaluating coupled fire-

atmosphere model systems2. While FireFlux is one of the most comprehensive field campaigns 

to date, the dataset does have some major limitations: especially the lack of sufficient 

measurements of fire spread and fire behavior properties. FireFlux II (FF2), was conducted on 30 

January 2013. The experiment was designed to allow an intense head fire to burn directly 

through an extensive instrumentation array including one 42-m and three 10-m micro-

meteorological towers. Each tower was equipped with a variety of sensors, including 3D sonic 

anemometers, pressure sensors, heat flux radiometers, and an array of fine-wire thermocouples to 

measure plume temperatures. The experiment was carried out under red flag warning conditions 

with strong winds of 8 m/s and relative humidity of approximately 24%. Instrumentation also 

included a scanning Doppler wind LIDAR, microwave temperature profilers, radiosonde 

balloons for upper-air soundings, a full suite of air quality instrumentation located downwind, 

and multiple ground- and tower-mounted infrared and visible video cameras. In addition, the fire 

spread was monitored from the air using helicopter mounted infrared and visible video cameras. 

Fireline progression was also recorded by a grid of thermocouples and small data loggers buried 

underground and in the path of the fire. Measured fire spread rates were approximately 1.5-2.5 

m/s for the head fire while the flanks spread at 0.7 m/s. 

RxCADRE 

The number of integrated, quality-assured datasets is small in wildland fire research, thereby 

limiting the general ability to evaluate models and tackle fundamental questions. To help fill this 

gap, the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment 

(RxCADRE) was proposed as an effort to collect, reduce, and complete a preliminary analysis of 

data. Data were collected in 2008, 2011 and 2012, on small replicate and large operational 

prescribed fire burn blocks, corresponding to longleaf pine ecosystems located at Eglin Air Force 

base in Florida and at the Joseph Jones Ecological Research Center in Georgia [46]. The goal 

was to develop synergies between measurements of fuel, atmospheric conditions, fire behavior, 

radiative energy, smoke generation, and fire effects for fire model development and validation. 

The RxCADRE project organized its data collection around a stepwise hierarchical structure 

with 6 major discipline areas: fuels, meteorology, fire behavior, radiative power and energy, 

emissions, and fire effects. These were presented earlier in Table 1. The burn block selection 

targeted grass, grass/shrub, and managed southern pine forest fuelbeds at both fine- and 

operational-scales. Each discipline employed data collection techniques ranging from in-situ 

instrumentation to mapping fire progression with manned and unmanned aircraft. Once 

collected, data were reviewed, reduced, analyzed and linked to metadata. Over 125 datasets and 

accompanying metadata are being uploaded and stored in the US Forest Service Research Data 
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Archive2 and will be available in the near future to all scientists and managers for purposes of 

evaluating and improving fire models, and advancing knowledge in the area of wildland fire 

science. Ten papers have been submitted for review and publication as a special issue of the 

International Journal of Wildland Fire. 

Table 4: Selected prescribed fire datasets. Note that for almost all experiments, fuel information 

(e.g., loading, relative humidity, curing, etc.) is available but is not indicated in the table, 

focusing instead on the instrumentation used. See the citations for more information. 

Experiment Fuel Conditions Plot Size Measurements Location Citations 

FireFlux I Grass Flat, Low 

Wind 

0.63 km2 

 

Fireline estimate, 3D wind, 

flame/fuel temperature plume 

temperatures 

 

La 

Marque, 

TX, USA 

[41,43,45,

51-52]3 

 

FireFlux II Grass Flat, Mod. 

Wind 

350×850 m2 

 

Fireline (IR), 3D Wind, 

flame/fuel temperature, 

plume thermodynamics, etc. 

 

La 

Marque, 

TX, USA 

[53]4 

Wooster et al. 

 

Grass 

 

Flat, Low 

Wind 

 

1.5×1.2 m2 Fireline (IR), FRP, Wind 

 

Lifted plot 

 

[54] 

RxCADRE Grass/

Shrub 

Flat, Mod. 

Wind 

 

200×200m2 

(multiple 

plots) 

All disciplines described in 

Table 1. 

Eglin 

AFB, FL, 

USA 

 

[46]5 

Henry W. 

Coe State 

Park 

Grass/

Shrub 

Slope, Low 

Wind 

4.5 km2 Atmospheric data such as 3D 

wind, flame/fuel temperature 

plume temperatures 

Northern 

CA, USA 

[55] 

Camp Swift Grass Flat, Mod. 

Wind 

100×100m2 

(3 plots) 

Heat flux, ROS, flame 

geometry, anemometer data, 

sodar, air temp, etc, 

Bastrop 

County, 

TX, USA 

[56] 

 

Cheney et al. Grass Flat, Low 

Wind 

25 km2 (121 

plots) 

ROS, mean wind speed, fuel 

loading, fireline size 

Northern 

Territory, 

Australia 

[14] 

ICFME Jack 

Pine/B

lack 

Spruce 

Flat, Low 

Wind 

(18 plots) ROS, Northwest 

Territories

, Canada 

[57] 

NJ Pine 

Barrens 

Pitch 

Pine/O

aks/Sh

rub 

Flat, Low 

Wind 

16 acres Fuel loading, firebrands, 

fireline intensity (IR), heat 

flux 

Pinelands 

National 

Reserve 

(NJ, USA) 

[58] 

  

 

 

                                                
2 http://www.fs.usda.gov/rds/archive/Catalog?freesearch=RxCadre&searchfield=# 
3 http://www.fireweather.org/fireflux-i 
4 http://www.fireweather.org/fireflux-ii 
5 http://www.fs.usda.gov/rds/archive/Catalog?freesearch=RxCadre&searchfield=# 

http://www.fs.usda.gov/rds/archive/Catalog?freesearch=RxCadre&searchfield=
http://www.fireweather.org/fireflux-ii
http://www.fireweather.org/fireflux-ii
http://www.fs.usda.gov/rds/archive/Catalog?freesearch=RxCadre&searchfield=
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International Crown Fire Modeling Experiment (ICFME) 

The International Crown Fire Modeling Experiment (ICFME) was a cooperative international 

experiment that brought together fire modeling experts from Canada, the United States, and 

Russia, to address the prediction of high-intensity fire behavior [57]. The goal of ICFME was to 

conduct a replicated series of highly instrumented crown fires to quantify parameters essential to 

modeling the initiation and spread of crowning fires. 

The experimental site was located near Fort Providence, Northwest Territories, in a dense, 

approximately 80-year old, jack pine stand. Aerial, surface, and forest floor fuels were sampled 

in ten burn plots. Firelines approximately 50 m wide were established around each plot, which 

involved cutting and removing standing trees, and bulldozing to mineral soil to facilitate access 

and control. Some fuel manipulation (pruning trees and/or removing surface fuel) was carried out 

on portions of some plots, but most of the area remained undisturbed. The ICFME project was 

carried out between 1995 and 2001. 

A description of the experimental design, goals, objectives and links to the project publications 

and data collected are available online6. 

In-situ fire behavior measurements 

The Fire Fundamentals Team at the Missoula Fire Science Laboratory has been collecting in-situ 

fire behavior and fire imagery data for several years. The team is currently compiling these 

datasets into a detailed database and will be posting these data at an accessible site. Data will 

include site location, date, fuel type, slope as well as 10 Hz data for total, radiant and convective 

heat flux, ambient air temperature and horizontal and vertical mass flow rates. Additionally, fire 

video imagery will be posted showing in-situ fire behavior footage. 

3.5. Recommendations on Infrastructure and Coordination 

Based on the user group meeting several key items were identified to improve infrastructure and 

coordination. Most importantly, there appears to be little coordination and standardization in the 

community on collection, storage and archival procedures for experiments. For instance, there is 

no common portal to post and share data. RxCADRE has just recently begun to post data with 

applicable metadata to the USFS archival system, however this is exclusive to data from federal 

experiments. 

To date there is no infrastructure to guide the storage and dissemination of information from 

experimental campaigns. A framework should be developed to coordinate the efforts of the 

research community applicable to data and models. Coordination between modelers and 

experimentalists has begun; however, much remains to be done. 

                                                
6 https://www.frames.gov/partner-sites/applied-fire-behavior/international-crown-fire-modeling-

experiment-icfme/ 

https://www.frames.gov/partner-sites/applied-fire-behavior/international-crown-fire-modeling-experiment-icfme/
https://www.frames.gov/partner-sites/applied-fire-behavior/international-crown-fire-modeling-experiment-icfme/


WIFIRE Workshop “Towards Data-Driven Operational Wildfire Spread Modeling” 

January 12-13, 2015, UCSD 

 

23 

For data assimilation, a very important component, sometimes missing, is description and 

quantification of errors. Evaluation of errors and reporting accuracy with data, such as through 

metadata is critical for data assimilation and proper experimental interpretation. This is now 

being added to metadata from the RxCADRE experiments and the practice should be continued 

on future experiments. The development of some common portal to post and share data, along 

with guidelines for reporting of errors is needed. 

Collection of the fire front progression as a function of time is also critical, if fireline data are to 

be assimilated. While some experiments have collected fireline data (e.g., Fireflux II, 

RxCADRE), these data are very limited in scope. Data from real fires may also be useful for this 

purpose. However, satellite detections often occur at low resolution (> 1km) and low frequency 

(1-4 times/day). More finely-resolved measurements are available but are taken at most once per 

day (NIROPS). Foreseeable developments of UAVs and satellite technologies will allow 

significant progress in this area, but the needs of both the research and operational communities 

should be addressed as products and missions are developed. Also, some existing data are not 

made public and the development of an open-source repository is needed. 

Finally, most experimental campaigns to date (prescribed burns) have not been conducted at 

conditions akin to extreme fires (high winds, steep slopes, low humidity, unstable atmospheric 

conditions). While current data are still useful for development of fire models, especially for 

applications to prescribed fires which occur under these milder conditions, there is an unmet 

need to document wildland fire dynamics under extreme conditions.  

4. Data Assimilation 

A data assimilation framework typically features the following main components (Fig. 7): a 

forward model that simulates the state of a physical system (with some modeling uncertainty) 

given some choices for a set of parameters or for some initial/boundary conditions, called control 

variables; a set of observations that describes the true state of the physical system (with some 

measurement/processing uncertainty); and an inverse model that calculates the distance between 

the simulated and observed states and modifies (i.e., updates) the control variables according to 

some algorithm that works to minimize that distance. In geosciences, the output of the forward 

model prior to a data assimilation update is called a forecast; the output of the forward model 

posterior to a data assimilation update is called an analysis. When applied to wildfire problems, 

and while there are some variations in the literature (see Table 5), the forward model is typically 

a fire spread simulator that uses an operational-level rate of spread (ROS) description; 

observations are generally fireline positions; the inverse model is some algorithm taken from the 

geoscience field accounting for both modeling and observation errors; and control variables are 

generally the parameters of the ROS model. 
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Figure 7: Data assimilation flow chart for a typical data-driven model. 

4.1. Data Sources and Uncertainty 

Wildfire rate of spread models require suitably accurate descriptions of the vegetation properties 

(i.e., the fuel), the terrain topography and weather conditions. These descriptions have to be 

spatially-resolved; the description of the fuel has to be updated for seasonal changes; the 

description of weather conditions has to be time-resolved. 

 Fuel maps in the US are available from Landfire. The Forest group at the Joint Research 

Centre (Ispra, Italy) translates Corine Land Cover to the US fuel categories7. Moisture is 

an important fuel property in wildfire dynamics and its description is quite complex: 

while live fuel moisture can be considered constant on the fire behavior scale, dead fuel 

moisture changes on an hourly scale and will respond to changes in atmospheric 

humidity. 

 Terrain topography data are available in the form of digital elevation maps (DEM)8. 

These maps can be post-processed to give the aspect and slope angles that define the 

orientation of the ground surface and are inputs to fire spread models. 

 Wind conditions are available from NOAAs 3-km High-Resolution Rapid Refresh 

(HRRR) model. The atmospheric data provided by the weather forecast center will be 

processed in different ways depending on the methodology used for data assimilation. 

Note that while the available data already meet many of the needs of wildfire rate of spread 

models, the data are often provided without any error estimate. There is a general need for 

validation studies of remote sensing equipment and methodologies (for instance by comparisons 

with field measurements). 

 

 

                                                
7 http://forest.jrc.ec.europa.eu  
8 http://opentopography.org, http://landcover.ucsd.edu, https://asterweb.jpl.nasa.gov  

http://forest.jrc.ec.europa.eu/
http://opentopography.org/
http://landcover.ucsd.edu/
https://asterweb.jpl.nasa.gov/
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4.2. Current Data-Driven Systems for Wildfire Spread Forecasting 

Data-driven models are widely used for numerical weather prediction and numerical 

environmental prediction (e.g., soil moisture analysis) applications. Wildfire applications are a 

recent target for data assimilation (see Table 5 summarizing the main contributions over the last 

decade). Studies using data-driven wildfire models are currently limited to theoretical tests (i.e., 

Observation System Simulation Experiments - OSSE) and post-analysis of controlled burns 

and/or wildfire events. There is a need to extend the current scope of data assimilation 

developments to the monitoring of wildfire events at the operational level. It is worth noting that 

this need is being met in Europe: starting in Summer 2015, the European Forest Fire Information 

System (EFFIS) (using the FARSITE simulator) will be data driven and will deliver daily 

forecasts of wildfire spread. 

An important limitation in current data-driven models is the lack of quantifiable uncertainty in 

both model and data. Data themselves are not useful if these data do not come with a 

quantification of the uncertainty (at least error bounds). It is important to account for both 

measurement errors and representativeness errors. Furthermore, models that are unnecessarily 

complex and depend on many unknown and to-be-estimated parameters may deteriorate the 

accuracy of the estimates of control variables. In data assimilation it is important to address the 

trade-off between complexity of the model and accuracy of the control variable updates. 

Finally, it is important to define data format standards (similar to Geographic Projection, 

WGS84, or Web Map Services with Time layer, WMS-T) and interfaces between different 

standards to be able to come out with an operational data model. 

4.3. Methodology 

Data assimilation methods are methods in which the state of the system (e.g., the fireline 

location) is modified through changes in the control variables (e.g., changes in the parameters of 

the fire rate-of-spread model or changes in the initial fire location in a forecast calculation). One 

differentiates between methods that work with one simulation (e.g., variational methods, 

optimization/control methods, methods based on the concept of the maximum aposteriori 

probability – MAP) and methods that work with a statistical ensemble of simulations (e.g., 

ensemble Kalman filters – EnKF, particle filters, genetic algorithms). 

While data assimilation methods have been available for several decades, their use tends to be 

problem dependent because of the nonlinearities associated with the system response to changes 

in the control variables and additional difficulties associated with non-Gaussian distributions of 

uncertainties (uncertainties in both the control variables and the measurements). The dimension 

of the control variable vector (i.e., the number of control variables) is also an issue. Large 

numbers of control variables are possible but these large numbers require sufficient information 

in the data (this is related to the notion of identifiability and/or observability of the model). 
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In data assimilation schemes using computational-intensive models and/or large numbers of 

control variables and/or a large statistical ensemble, the use of high-performance parallel 

computing platforms becomes necessary. Another technical feature of data assimilation for 

operational applications is the need to establish robust automated schemes for input data retrieval 

and model set-up. Access to fuel maps, elevation maps and wind datasets has to be negotiated 

with the data provider in order to both facilitate and strengthen access. Furthermore, forward and 

inverse models used in the data assimilation loop have to meet minimum levels of reliability. An 

example of limited reliability with the forward model is found when using the Weather Research 

Forecast model – WRF – in the presence of sharp terrain gradients and occasionally observing 

the development of a numerical instability leading to simulation failure. An example of limited 

reliability with the inverse model is found when using EnKF with few observations and failing to 

obtain convergence of the data assimilation cycles. These issues are research problems in their 

own right. 

Another robustness issue for data assimilation algorithms is that related to the quality of the 

observations obtained through sensors. Data assimilation algorithms need to provide reasonable 

estimates of the control variables even when incorrect information on sensor noise is used (this 

property is guaranteed for linear models but not non-linear models). 

Table 5: A review of wildfire data assimilation methods found in the literature. 

Ref. Model/Control variables Observation Assimilation method 

[59,60] 
cell automata 

fire/no fire field 
fire/no fire field particle filter 

[61,62] 
cell automata 

ROS parameters 
fire/no fire field genetic algorithm 

[63,64] 
cell automata 

fire/no fire field 
fire/no fire field particle filter 

[1,65] 
reaction-diffusion eqn. 

temperature field 
temperature field EnKF 

[1] 
reaction-diffusion eqn. 

eqns. For coefficients 
combustion front best fit 

[2,66] 

coupled WRF-SFIRE 

& level-set  

horizontal morphing 

fire/no fire field EnKF 

[3,67] 
coupled WRF-SFIRE 

& level-set  
fireline  

fire re-play 

atmosphere spin-up 

[68,69] 
fuel moisture 

field 

RAWS fuel moisture 

station data 
trend surface, extended KF 

[70] 
coupled WRF-SFIRE 

fire arrival time 

MODIS/VIIRS active fires 

detection 

least squares 

atmosphere spin-up 

[4,6,71] 
level-set 

ROS parameters 
fireline EnKF, particle filter 
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[6,72] 
level set 

fire front position 
fireline EnKF 

 

5. Conclusion 

The general objective of this workshop, also one of the main objectives of the WIFIRE project, is 

to develop the foundations for an operational wildfire spread forecasting capability. The 

workshop participants have identified numerous technical barriers on the road to developing such 

a capability; they have also shared a general optimistic sense that given the new (current or 

upcoming) remote sensing, computing, networking, storage, visualization technologies (i.e., the 

new cyberinfrastructure), the goal of providing an operational wildfire spread forecasting 

capability may be achieved within approximately a decade. 

Current challenges include: 

 The limitations of current rate-of-spread models used to simulate wildland fire 

propagation. These models are based on limited understanding of the physics and have 

been calibrated against experimental data representing relatively mild (i.e., steady-state) 

conditions: they need to be based on a deeper understanding of the physics and include 

extreme fire behavior conditions (i.e., high wind, low humidity, unstable atmospheric 

conditions as well as steep slopes). 

 The limitations of current input data to wildland fire rate-of-spread models. Well-

resolved information on vegetation, topography and weather is required and this 

information needs to be regularly updated and provided with spatial resolution on the 

order of 10 meters. 

 The limitations of current remote sensing capabilities. The envisioned wildfire spread 

forecasting capability requires real-time observations of the fire front location (based on 

airborne or spaceborne mid-infrared observations) and these observations need to be 

made at fireline scales and/or geographical scales (i.e., topographical scales and land 

cover scales), i.e., with approximately 10 meter spatial resolution and 10 minutes 

temporal resolution. 

 The limited scope of current experimental/field databases. The envisioned wildfire spread 

forecasting capability will have to go through an extensive trial period to demonstrate 

value and robustness. This will require a systematic effort to document prescribed fires 

and/or wildfire events, preferably including both mild and extreme conditions. The 

wildland fire research community needs to define standards on collection, storage and 

archival procedures of experimental/field data. In addition, data uncertainties need to be 

systematically quantified. 

To meet these challenges, the wildland fire research community can build on preliminary 

work that has already demonstrated the potential of data-driven tools for fire spread 

predictions (see Table 5). It can also count on new remote sensing technologies using 
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unmanned aerial vehicles (UAVs) or commercial satellites, as well as on existing methods 

developed in geosciences (e.g., in the area of numerical weather prediction). With these 

assets, the question is not “if” wildfire spread forecasting tools will become available; the 

question is simply “when”. 
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Appendix A: WIFIRE workshop program 

 

Monday, January 12 (overview, breakout session, review of operational models) 

- 8:30-9:00 am – Welcome remarks and presentation of WIFIRE  

 Ilkay Altintas 

- 9:00-10:00 am – WIFIRE workflow structures  

 Ilkay Altintas and Dan Crawl 

- 10:00-10:30 am – Coffee Break 

- 10:30-12:00 – Introduction session 

(5-minutes/5-slides presentation by each workshop participant) 

Ilkay Altintas; Jessica Block; Craig Clements; Anna Cortés; Raymond de Callafon; Evan 

Ellicott; Jean-Baptiste Filippi; Mark Finney; Michael Gollner; Kayo Ide; Marie Ann 

Jenkins; Dan Jimenez; Christopher Lautenberger; Jan Mandel; Sophie Ricci; Mélanie 

Rochoux; Albert Simeoni; Arnaud Trouvé 

- 12:00-1:30 – Catered Lunch 

- 1:30-3:30 – Breakout session 

o Operational rate-of-spread models for wildfire spread 

Mark Finney (panel Lead); Ilkay Altintas; Jessica Block; Christopher 

Lautenberger; Albert Simeoni 

o CFD models for wildfire spread 

Marie Ann Jenkins (panel Lead); Jean-Baptiste Filippi; Adam Kochanski; Arnaud 

Trouvé 

o Wildfire data 

Craig Clements (panel Lead); Evan Ellicott; Michael Gollner; Dan Jimenez 

o Data Assimilation 

Jan Mandel (panel Lead); Anna Cortés; Raymond de Callafon; Kayo Ide; Mélanie 

Rochoux; Sophie Ricci 

- 3:30-4:00 – Coffee Break 

- 4:00-5:00 – Operational rate-of-spread models for wildfire spread 

Chair: Mark Finney 

(10-minutes review by Mark Finney (Lead) followed by open discussion) 

- 6:00-8:00 – Dinner off site 
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Tuesday, January 13 (review of CFD models, wildfire data, and data assimilation, report 

writing) 

- 8:30-9:30 – CFD models for wildfire Spread 

Chair: Marie Ann Jenkins 

(10-minutes review by Marie Ann Jenkins (Lead) followed by open discussion) 

- 9:30-10:00 – Wildfire Data 

Chair: Craig Clements 

(10-minutes review by Craig Clements (Lead) followed by open discussion) 

- 10:00-10:30 am – Coffee Break 

- 10:30-11:00 – Wildfire Data (cont.) 

Chair: Craig Clements 

(open discussion) 

- 11:00-12:00 – Data Assimilation 

Chair: Jan Mandel 

(10-minutes review by Jan Mandel (Lead) followed by open discussion) 

- 12:00-1:30 – Catered Lunch 

- 1:30-2:30 – Data Driven Wildfire Spread Models 

Chairs: Michael Gollner, Arnaud Trouvé  

(open discussion) 

- 2:30-3:30 – Report writing 

(all participants) 

- 3:30-4:00 – Coffee break 

- 4:00-5:00 – Continuation of report writing and closing remarks 

(all participants) 
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Appendix B: List of participants 

WIFIRE participants: 

Ilkay Altintas (UCSD) 

Jessica Block (UCSD) 

Daniel Crawl (UCSD) 

Charles Cowart (UCSD) 

Raymond de Callafon (UCSD) 

Michael Gollner (UMD) 

John Graham (UCSD) 

Amarnath Gupta (UCSD) 

Jeff Sale (UCSD) 

Wei Tang (UMD) 

Arnaud Trouvé (UMD) 

Cong Zhang (UMD) 

Invited Participants: 

Derek Chong (University of Melbourne, Australia) 

Craig Clements (San Jose State University) 

Ana Cortes, (Universitat Autònoma de Barcelona, Spain) 

Evan Ellicott (University of Maryland) 

Jean-Baptiste Filippi (University of Corte, France) 

Mark Finney (US Forest Service) 

Kayo Ide (University of Maryland) 

Marie Ann Jenkins (York University, Canada) 

Dan Jimenez (US Forest Service) 

Christopher Lautenberger (Reax Engineering Inc.) 

Jan Mandel (University of Colorado) 

Mélanie Rochoux (CERFACS, France) 

Albert Simeoni (University of Edinburgh, UK) 

 

 


